Weaving bark fibre

Woven Bark Fiber

I made a rough type of textile from bark fiber. This is the same tree I use for making cordage though I don’t know its name. It has been raining a lot here lately (the video also shows how well the hut stands up to rain) and this caused a large wattle tree to fall down taking a few smaller trees with it. One of the trees was the type I use for fiber. So I stripped the bark from it and divided it into thinner strips back at the hut.

I spun the fiber strips into a rough yarn using a drop spindle. The drop spindle was basically the spindle and fly wheel I used in the pump drill video I made a while ago. A small stick was tied to the top of the drop spindle to act as a hook to make sure the fibers spun. I tied bark strips to the spindle and spun the spindle so it twisted the strip. When one strip ran out a new strip was added and twisted into the thread.

I then made a loom by hammering stakes into the ground and lashing cross bars to it. Stakes were hammered into the ground to hold every first string while a movable cross bar held every second string. When the bar was lifted a gap was formed where every second string was above every first string. Then when the bar was dropped a gap was formed where the opposite was true. So in this way the weaving thread could be drawn through over and under one way and then under over back the opposite way. The alternative was to weave by hand which would have taken longer.

Collecting, stripping and drying the fiber took a few days to do. Spinning and weaving took just over a day per 70 cm square. The result was a rough material about as stiff as a welcome mat. So at this stage I’m using them as mats. In future I will investigate finer fibers, such as those from banana tree stalks, as a possible material for cloth. They take more processing but produce a finer product. I may also make a permanent, portable loom that can be taken indoors when it rains.

Youtube channel: http://www.youtube.com/c/PrimitiveTechnology

Patreon page: https://www.patreon.com/user?u=2945881&ty=h

I have no face book page.

Bow and Arrow

I made a bow and arrows in the wild using only natural materials and primitive tools I’d made previously from scratch (as usual). The tools used were a celt stone hatchet, a stone chisel, various stone blades and fire sticks.

The stave began as a small tree (probably northern olive) about 5 cm (2 inches) in diameter which I cut to a length of 1.25 m (50 inches) using a celt hatchet. I don’t know the name of the timber but it’s very common here and is the same type I use for axe handles. I then split the stave in two using a stone chisel and mallet. Selecting one stave, I began shaping the bow. The stave twisted slightly along its length so using the chisel I split off wood at the ends of the stave but on opposite sides. This then gave a straight, flat stave. From this point I began narrowing the width and to a lesser extent the depth of the bow limbs so they tapered towards the tips of the bow limbs. This was done using the chisel, a large chopping stone and smaller scraping stones only removing wood from the belly and side of the bow. Importantly, the back of the bow was not cut at all as this would cause it to break under stress. The bark was even left on to help protect the back of the bow from accidental cuts and scrapes. At the middle of the bow I narrowed the width of the bow slightly to form a handle about 12.5 cm long. Importantly, I did not narrow the depth of the bow as this would weaken it. This narrow handle section is not essential but makes the bow easier to grip and puts the arrow closer to the center of the bow. Simple string nocks were then carved into the sides of the tips of the bow. I cut and split the wood in one afternoon, and did the rest the next day (in other words it only took about a day to make).

I made the string for the bow using the bark from a fast growing tree that grows in disturbed rain-forest clearings. The tree is a pioneer species that grows quickly with weak timber but strong bark fiber. Note in the video that the tree I took already has a new shoot and so will grow another branch from the stump. The bark was stripped and shredded. The next day I twisted the thin strips of fiber into cordage. To make cordage, two strands of fiber are individually twisted in (say) a clockwise direction but are then twisted together in an anti-clockwise direction. This way the individual strands want to unravel in one direction but can’t because they are twisted together in the opposite direction.

Next I strung up the bow. Note in the video that limb on the right side of the screen bends more than the left limb. To fix this, I left the bow strung up and scraped wood off the belly of the limb that bent the least, a process called tillering. This caused the limb to bend more so that it roughly mirrored the other limb. More tillering was done to make the limbs bend evenly along their length. If a limb bends unevenly in one spot a hinge can develop and puts uneven amounts of stress on the limb possibly causing it to break. The result of my efforts was a reasonably symmetrical bow without any obvious hinging.

For the arrows I used small saplings between 6 and 8 mm in diameter and cut to a length of 60 cm. The bark was scraped off because it would otherwise come off with use in an irregular manner causing an uneven shape effecting its flight. A notch was carved in the back of each arrow with a stone blade deep enough to accept the bow string. If the notches are not deep enough the arrow can come off the string while releasing causing a misfire. The tip of the arrow was charred in a fire and sharpened against a rock. The fire hardens the wood and makes it easier to sharpen as charred wood scrapes off with ease. The fletching was made from the feathers of a bush turkey picked up from the ground (no turkeys were harmed in the making of this video). One feather fletched one arrow each. The feather was split in half and cut into three lengths. Each fletch had the front and back reduced to its spine to be tied onto the shaft. Tree resin was used to hold the fletching one and thin pieces of bark fibre were used to lash the fletching down. Finally, the fletching was neatly trimmed using a hot coal from the fire, melting the feather to shape rather than cutting it. Each arrow took about 1 hour to make not including the time spent looking for shafts. A quiver to hold the arrows was also made from bark.

It’s noteworthy that all the shooting in this video was done less than a week after cutting the wood meaning the bow was still green. Ideally the wood should be left to season or dry out before use. I cleared a shooting range in a clearing with a bank behind it to catch stray arrows. The target was a partially rotten log so that the arrows wouldn’t get damaged too much. The shooting was done at a distance of 10 m. At this range accuracy was a bit more than 50% with reasonable force behind the shots. Accuracy would probably improve with practice and consistently made arrows. The arrows embedded themselves strongly into the wood and were difficult to remove. The string was fairly durable. I made two strings for the bow. During my practice I had the string break only 3 times while firing the arrows 200 or 300 times.

I don’t know the draw weight of this bow but it’s probably at least 15 kg (35 pounds) if not greater (I made a similar, smaller bow at home and hung a 15 kg weight that drew 33 cm). The short size of the bow (1.25m) made it easy to construct and easy to find a straight piece of wood. The string is short and also easy to make with less places to break. The 60 cm (2 foot) long arrows are short like the bow, making it easy to find straight shafts. The method of splitting the stave saved effort in removing wood as opposed to carving a bow from a log. The cross section of the bow limbs are rectangular and are less likely to break than a round cross section. The stress on the back of the bow is spread wider with a rectangular cross section than a round one. Short bows tend to shoot with high velocity too.

Hunting is heavily restricted here in Australia to conserve our native fauna. I have not hunted any animals and made the bow simply as an exercise in primitive technology. However I’ll attempt to address the question of the effectiveness as a hunting weapon. In the video I got footage of a scrub turkey standing about 5 m away. At this range most people could most certainly hit a target of that size with minimal practice. The arrow would certainly pierce it and it would provide a good meal and lots feathers for fletching new arrows, justifying the effort used to make a bow. For larger game such as pigs it could work probably at a range of 10 m provided aim was perfect and the arrows were very sharp. This weapon is definitely more accurate than a sling for a beginner and would probably be more reliable though it takes more time to make.

Making Charcoal

I made a batch of charcoal using the mound method then stored it in baskets for later use. Charcoal is a fuel that burns hotter than the wood it’s made from. This is because the initial energy consuming steps of combustion have taken place while making the charcoal, driving off the volatile components of the wood (such as water and sap). The result is a nearly pure carbon fuel that burns hotter than wood without smoke and with less flame. Charcoal was primarily a metallurgical fuel in ancient times but was sometimes used for cooking too.

To make the charcoal the wood was broken up and stacked in to a mound with the largest pieces in the center and smaller sticks and leaves on the out side. The mound was coated in mud and a hole was left in the top while 8 smaller air holes were made around the base of the mound. A fire was kindled in the top of the mound using hot coals from the fire and the burning process began.

The fire burned down the inside of the mound against the updraft. I reason that this is a better way to make charcoal as the rising flames have used up the oxygen and prevent the charcoal already made above them from burning while driving out even more volatiles .

I watched the air holes at the base of the mound and when the fire had burned right up to each opening I plugged them with mud. Once all 8 holes had be sealed, the hole in the top of the mound was sealed with mud and the mound left to cool.

The next day when the mound was cool to the touch (this can take about 2 days sometimes) I opened the mound. The resulting charcoal was good quality. Some wood near the air entries had burned to ash though these were only small twigs and leaves. This is the reason small brush is put on the out side of the mound, to be burned preferentially to the larger wood on the inside thus protecting the larger pieces of charcoal.

The charcoal that was made was hard and shiny. When broken open it had the ray structure of the wood preserved. When moving the hand through it the charcoal sounded tinny, like coral on a beach being moved by waves. These are signs of good quality. Bad charcoal is soft, breaks easily and has a muffled sound.

I intend to use the charcoal to produce hotter fires than I’m able to with wood alone. From my research, a natural draft furnace using wood (a kiln) can reach a maximum of 1400 c degrees whereas a natural draft furnace using charcoal can reach 1600 c degrees. Achieving high temperatures is necessary for changing material to obtain better technology (e.g smelting ore into metal).

Cord drill and Pump drill

A cord drill consists of a shaft, a fly wheel and a piece of cord. The fly wheel is fitted onto the shaft so it sits about a third of the way from the bottom of the stick. The middle of the cord is then fixed to the top of the shaft. To use it the two ends of the cord are wrapped around the shaft, one end of the cord is held in one hand and the other end in the other hand. The ends of the cord are then pulled outwards. As a result the shaft and fly wheel spin with the bottom of the shaft drilling into whatever needs to be drilled. As the cords are pulled out as far as they can go, the flywheel keeps the drill spinning wrapping the cord back around the shaft in the other direction. When it stops spinning, the cords are pulled outwards again sending the drill spinning in the other direction.

I used this tool to make fire in the same way I used fire sticks. I then made fly wheels from clay and fired them. Another cord drill was made with the clay fly wheel and was fitted with a stone tip. This was then used as a drill and a hole was then drilled in a piece of wood. This piece of wood was slipped over the spindle of the original cord drill upgrading it to a pump drill.

The pump drill is basically the same tool as the cord drill with a cross bar. A hole is drilled into the cross bar and the bar slid onto the shaft. The ends of the cord are then fixed to the ends of the cross bar. To use it the cord is twisted around the spindle as before and the cross bar is pumped up and down. This causes the same motion of the drill as before.

As far as fire making goes I’ll stick to fire sticks as the parts are easier to make. But for people with soft hands, this would be a good method for making fire without getting blisters. The effort during the fire making is less too. The pump drill was successful at making fire too but because their were so many moving parts I had to try many times before it worked. Cords would break, the fly wheel would loosen and the drill kept jumping out of the socket. I spent an afternoon trying to get fire with it but it eventually worked. I would be more likely to use this device as a carpentry drill. It would be useful for drilling holes in timber that was going to be assembled with pegs. One thing I need to work on is the stone drill bits. They need to be fixed firmly to the shaft so that they are in line with the spinning action. If they are off a bit the whole drill wobbles.

 

 

Baskets and stone hatchet

 

I made 2 types of basket and a celt hatchet for this video.

The first type of basket made was a coil basket. Bunches of palm leaves where wrapped in thin strips of lawyer cane to for a coil. This was then coiled into a spiral with each coil being tied to the last to keep it in place. This was done by sewing a new section of coil to the previous one. The basket was given a flat base so it could stand up but could be made any shape.

The second basket was made of lawyer cane. It started with thick strips of cane placed on the ground crossing in the centers to form an asterix shape. Importantly another half a lawyer strip was added so that the number of spokes the basket had was odd- even numbers don’t work with this type of basket. The canes were tied together in the center with a strip of bark and a piece of cane was woven in a spiral around the spokes like a spider web. When the base was wide enough the spokes were bent up to form the vertical sides of the basket. The weaving continued up the walls to the top and the ends of the spokes folded down back into the basket.

The coil method was very time consuming (about a week on and off) and made a heavy basket but used simple materials and had few gaps in it. Long grass could be used instead of palm leaves and any type of ties could be used to bind the coils. This type of basket can look very neat if done carefully (the one I made was rough). Also I would add that circular or rectangular mats might be made using this method and these materials. This might provide thick padding against the ground for sitting and sleeping and when finished could be rolled up and stored out of the way.

The woven cane baskets were much faster to make (2 or 3 hours each including harvesting materials). They used fewer materials and were lighter too. I could have easily made them bigger but wanted them to fit through the narrow door of the tiled hut.

The baskets will be used mainly for storing charcoal inside huts out of the rain but are also useful for carrying leaf mulch for the garden. They have flat bases meaning they can stand upright and even be stacked on top of each other.

I also made a small celt hatchet for lighter work. The big celt I made is useful for chopping bigger trees but is overkill for saplings and smaller trees. The method used was basically the same for the big celt though this time I used no fire hardening. The handle came from a branch cleared from the the sweet potato patch and had sat for a few months seasoning on the ground. It was much harder to shape than green wood but was hard enough to not need fire hardening. So far I’ve used it without the handle splitting though the basalt head chipped when trying to chop dry eucalyptus branches (an especially hard wood)- I re sharpened it and it works on other woods OK.

Sling

Sling

A sling is a weapon for throwing stones with greater force and range than by hand alone. It consists of a pouch and two lengths of cord. A rock is placed in the pouch and the two ends of the cords are held in the hand. The sling is then swung over the head to gain momentum. The sling is then swung forward in a throwing action and one end of the cord is released causing the pouch to open releasing the stone to fly at the target.

I made this sling from bark fibre. A branch was taken from a fast growing tree and the bark peeled from it. The inner bark was then separated from the outer bark by hand and pulled apart to form thin strips. These were left overnight to dry slightly. The strips were twisted into cordage (thin ropes) with two strands.

Cordage can be made from many natural fibres. Two or more strands are both twisted individually in one direction (clockwise in this case) and are then twisted together in the opposite direction (anti-clockwise). The two strands want to unravel in the clockwise direction but are unable to due to being twisted together in the opposite direction.

The cord was then tied in such a way that a section of three cords was formed in the middle of the length. A single strip of bark was woven between the three pieces of cord to form a pouch to hold stones. A loop was tied at one end of the sling to slip over the finger and a knot tied in the other end to be held onto and released while firing. The length of the sling was a little more than my outstretched arms pan. Latter I shortened it by tying knots in the cord.

To use the sling the loop is slipped over the finger and the knot in the other end is held between the thumb and forefinger. A stone is placed in the pouch and the sling is swung around above the head one or more times. At the appropriate part of the swing the sling is swung forward with a throwing action and the knot is released. The pouch then opens up releasing the stone which if aimed correctly flies toward its target with great velocity and momentum, much more so than if thrown by hand.

The training was difficult. The last time I used a sling was about eight years ago. Having said that, I manage to hit the targets a few times. In the video, the first target I set up and filmed was a pot sherd on a stick at about 10m away. I hit it first go though it was most likely a fluke. I then set up a post at 20 m and was not so accurate. I set up more pots and tiles on sticks in a clearing at 10 m, then in a creek at 15m and finally tiles in the clearing again at 10 m. With practice I noticed I got better.

The advice I’d give would be to set up targets 10- 20m away and practice with the sling. Aiming the sling is roughly this: Swing the sling in the same plane the target is on (determines y- axis), then time the release of the sling when it will let the stone go towards the target (determines x- axis). Use larger stones as they swing slower and are easier to time the release. Larger stone also carry more momentum. The stones should also be smooth so they fly straight and don’t grip onto the pouch when released but fly out smoothly on target instead.

I built the sling with a solid pouch like those I used as a kid, but my research showed that some have a split pouch. This might be a better design but I didn’t test it during this project. The bark fibre worked well. It was durable, inflexible and made a good material for the sling.

The benefit of the sling as a weapon is that it is easy to make, is very portable, and has few components to break and the ammunition (stone) is everywhere. The disadvantages are that it is difficult to learn to use and cannot be fired in thick forest for lack of room to swing it.

sling

Chimney and pots.

I built a fireplace and chimney onto the tiled roof hut for light and cooking purposes. An external fireplace was built in the back wall of the hut. This fireplace was not for heating. That was taken care of by the pre-existing underfloor heating system. I camped in the hut one night and the fireplace gave good light to see by while the underfloor heating made it comfortably warm to sleep in.

I also needed more and larger pots for carrying water and boiling it. Clay from the creek bank was dug and used to make the pots. Stones were removed from the clay and broken tiles left over from the construction of the hut were crushed and added as grog. This prevents pots from cracking during drying and firing. The clay was then mixed by hand to form a homogenous mixture.

A cooking pot and 4 large pots (just under 25cm tall and 25cm wide) were made using the coiling method. Some layers of the pot had lines scraped on top of them to help the next layers stick to them better, but this was probably unnecessary. The pots were rubbed with a snail shell and a smooth seed pod in a process called burnishing. This adds strength to the pots and makes them more waterproof. I only burnished them lightly. If done well they can get a very shiny finish.

The kiln, originally used for firing roof tiles for the hut, was used to fire the larger pottery. Originally I fired previous pots in small pit fires. But the kiln allowed me to fire larger pots with a lower breakage rate than pit fire. The quality of kiln fired pots is also higher than pit fired pots as the kiln reaches a higher and less variable temperature. One of the four large pots cracked during firing. In total the project yielded 3 large water pots and one small cooking pot.

I used the large pots to carry water from the creek to irrigate a sweet potato patch behind the wattle and daub hut (across the creek from the tile hut).  The smaller pot was used to boil the creek water. First I put the pot full of water back in the kiln and fired it which brought the water to a simmering boil. Another day I decided to try boiling the water with rocks. Wooden tongs were made using a split sapling and the fireplace was lit. Quartz stones were placed in the fireplace and more wood piled on top. The stones took about 15 or 20 minutes till they glowed red hot. They were then taken from the fire using the tongs and placed in the pot of water. The small pot only took about 4 rocks to boil violently. Any pathogens that were in the water would have surely died from the 20 minutes or so of rolling boil (although I’ve never become sick drinking this water straight anyway). I drank the water and it was like warm tea.

Building a hut with a kiln-fired tiled roof, underfloor heating and mud pile walls.

I built a hut with a tiled roof, underfloor heating and mud and stone walls. This has been my most ambitious primitive project yet and was motivated by the scarcity of permanent roofing materials in this location. Here, palm thatch decays quickly due to the humidity and insects. Having some experience in making pottery I wondered if roof tiles could feasibly be made to get around these problems. Another advantage of a tiled is that it is fire proof. A wood fired, underfloor heating system was installed for cold weather. A substantial wall of mud and stone were built under the finished roof. It should be obvious that this is not a survival shelter but a project used to develop primitive technological skills.

Time line: 102 days (21/5/15-30/8/15)

Chopping wood, carving mortises, putting up frame:  10 days (21/5/ 15 -31/5/15)

Using a celt stone axe I had made previously (https://www.youtube.com/watch?v=BN-34JfUrHY) I harvested the timber. 6 posts were put into the ground. The floor plan of the hut was a 2 X 2 m square. The 4 corner posts stood 1 m above the ground and buried 0.25m below ground. The 2 ridge posts were 2m above the ground and buried 0.25 m below ground. The ridge and wall beams were 2.5 m long. These had 2 mortises each at 0.5 m from the ends made using a mallet and stone chisel. These were then fire hardened to prevent the wood splitting. The top of the posts were carved into tennons for the mortises to fit onto. Rafters 1.75m long were lashed together and laid onto the frame and then lashed to it. Saplings for the tiles to sit on were harvested later as needed after each firing.

Building kiln and tile frames: 5 days (3/6/ 15- 8/6/15)

A simple kiln was built with a removable (replaceable) kiln floor or grate. The grate was a clay disc about 0.25m in diameter with 19 holes in it to let flames through it. A 0.25m wide, 0.25 deep trench was dug into a slope and a stone lintel was used to cover over it. Onto this the mud wall of the kiln was built. The inner diameter of the kiln was a bit wider than the grate (about 0.3m) and the height of the kiln was about 0.5m tall. The kiln wall was about 0.12m wide. A fire was then lit in the trench or firebox to dry the structure. Originally the fire box of the kiln had 2 stones with a broken tile resting on it as a sort of grate bar. Wood was fed over the bar while air entered under it. This caused the air to come up through the burning wood so that efficiency was increased. Later 2 rows of mud were put into the fire box and a few purpose made grate bars were put in place to make a permanent version of this. Having grate bars that raise the fuel bed off the ground so air goes up through it increases heat production and fuel efficiency several times. 20 tile frames were made. These were split strips of lawyer cane that were kinked and bent into rectangles. They were 25cm long and 15cm wide.

Rain delay: 36 days (9/6/15- 14/7/15)

In what would normally be the dry season we had over a month of unseasonal rain. Work completely stopped on the hut. Unfired tiles left in the open dissolved in the rain, large amounts of dry firewood were impossible to find and the wooden frame of the hut lay exposed to the elements with mould growing on it.

It was during this time I built the wood shed (https://www.youtube.com/watch?v=ZajpkwDeEYg) to store fire wood and unfired tiles in preparation for the firings to come. Despite the weather I managed to make and fire 20 roof tiles as a test.

Tile making and firing: 28 days (14/7/15-11/8/15)

To make a batch of tiles, clay from the creek bank was dug, mixed with old crushed up pottery or broken tiles and made into 20 balls per batch. A flat stone was dusted with wood ash to stop the clay sticking to it. A lawyer cane tile mould was placed on this and the ball of clay pressed into it and flattened. The surface was dusted with ash and the tile flipped over. The other side then had a tab made into the upper end for it to fit onto the batten. The tile, still in its frame, was then set upright near a fire to dry or left to air if no fire was available. Meanwhile the tiles made two days earlier were place into the kiln 20 at a time (10 at the bottom and 10 at the top) and fired until those at the top glowed at least red hot. Each firing took about 4 hours with the kiln only needing periodic feeding of fire wood allowing me to make tiles for the firing 2 days in advance. The semi dry tiles from the day before were laid against the kiln to become bone dry (slightly damp tile would explode if fired).

A typical day of tile making was divided into a morning and afternoon shift: The morning involved firing a batch of dry tiles while simultaneously making another batch and leaving it to dry. The afternoon shift involved mining, processing clay and collecting firewood.

In total I made and fired 450 flat tiles and 15 curved ridge tiles. It took 25 firings with 20 tiles per firing (the 24th and 25th firing made up for breakages). A 26th firing was done for the roof capping tiles.

The tiles above the firebox got the hottest glowing orange to yellow hot. Those near the top only glowed high red. Some days the wind blew into the kiln and raised the temperature to the point where the some tiles started to soften and sag with some minerals beginning to melt out of them. These tiles were like stone in hardness.

Stone footing for wall: 1 day (14/8/15)

A stone footing was built around the hut for the mud wall to be built on. If a mud wall is built on stone footing its longevity in increased as it cannot wick up moisture from the ground. This only took a day.

Underfloor heating:  2 days (15/8/15- 16/8/15)

A trench was dug into one side of the floor of the hut from front to back and covered with stone slabs. Gaps were sealed with mud and a fire was lit in the front end. The slight incline ensured that the smoke and flames travelled beneath the floor heating it. A short chimney was built at the back to increase the draft and the stones were covered in mud to form a level platform. The result was a slightly raised floor area that was heated from below. This is similar in principal to a Korean “Ondol”, Chinese “Kang” bed or Roman “Hypocaust”. Flames travel beneath the floor heating it and radiating heat straight up into the room.

Wall: (17/8/15- 30/8/15)

The wall was constructed of mud. Originally I was going to dig soil from around the hut to use for the wall but it became quickly apparent that the drain it would leave around the structure would be too large and lead to the structural instability of the hut. So instead I excavated a large pit in front of the kiln for soil. The mud was placed onto the stone footing so that the wall was about 0.25m thick. The first few layers were of mud alone but I started adding stones to the layers to cut down on the amount of mud needed. It took less effort to carry rocks than it did to dig soil and carry water to make the mud. Before building the wall the wooden structure swayed worryingly when pushed by hand. After the first few courses of mud wall however the posts were held rigidly in place forming a solid structure.

Summary

This was the most complex hut I’ve ever built because of the materials involved, the scale and planning and management of resources. The frame was an experiment in the use of mortise and tennon joints- the first time I’ve used them in a structure and it was justified, given the weight of the roofing material. Firing the tiles in small batches of 20 was inefficient in terms of fuel with one large firing being preferable to 26 small ones. If I were to do it again I might make the all the tiles first then stack them in a pile and cover them with mud- a clamp kiln. The advantage of firing the tiles in small batches was that they did not need to be stored before firing in a separate shelter but be made, fired and put in place on the roof as I went. The underfloor heating was an interesting experiment though here it would only be necessary during the coldest months of the year. It was easy to build and would make all the difference to comfort in cold locations. The mud wall was technically easy to build but required much more labour compared to a wattle and daub wall. The benefit of this though was the stabilising effect on the whole structure. The roof wobbled slightly before building the wall but after was held firmly in place. The finished structure is a little dark and needs to be lit using resin fuelled lamps. In future I may consider windows for better lighting. All in all it is a good, solid, fireproof structure that will not decay any time soon.

Palm Thatched Wattle And Daub Hut

This is an old hut I built 2 years ago and have since demolished. It was a 2 m square floor with wattle and daub walls 1.5 m high topped with a pyramidal roof thatched with Alexander palm fronds. The building method is my usual plan- get a roof up first then build the walls. From start to finish it took 27 days (it could have been faster though- this was at a casual speed). This was the first wattle and daub hut I built and is larger than the other one I built later (my idea for now is to build small but well although I’ll try larger huts again in future).

The roof lasted for a few months before becoming rotten and bug eaten. As an important note the species of palm used in thatching makes all the difference. Had this hut been built in the mountain with wait-a-while palm fronds it would have lasted 2 years at least. Instead it was thatched with alexander palm fronds that deteriorated quickly.

I wasn’t to know this and was trying to adapt hut building practice I learned in the mountain to low land conditions (I’ve built similar huts up the mountain with the same roof shape that have lasted a long time). I hope in future videos to explore better roofing options to use in areas like this.

Also of interest in the video is another pot I make showing more detail than previous videos. The fire place for the hut is a simple pit in the center of the floor. It is a good hut design though it requires a simple ladder to construct.